Hur man beräknar vägda rörliga genomsnittsvärden i Excel med hjälp av exponentiell utjämning. Excel-dataanalys för dummies, andra utgåvan. Exponentiell utjämning i Excel beräknar glidande medelvärdet. Exponentiell utjämning väger emellertid värdena som ingår i de genomsnittliga beräkningarna för att de senaste värdena har En större effekt på den genomsnittliga beräkningen och gamla värden har en mindre effekt Denna viktning uppnås genom en utjämningskonstant. För att illustrera hur verktyget för exponential utjämning fungerar, anta att du åter tittar på den genomsnittliga daglig temperaturinformationen. För att beräkna vägda glidmedel Använd följande exponentialutjämning: För att beräkna ett exponentiellt jämnt glidande medelvärde, klicka först på knappen Datatabell s Data Analysis. När Excel visar dialogrutan Dataanalys väljer du alternativet Exponentiell utjämning från listan och klickar sedan på OK. Excel visar dialogrutan Exponentiell utjämning. Identifiera data. För att identifiera t han data för vilken du vill beräkna ett exponentiellt jämnt glidande medelvärde, klicka i textrutan Inmatningsområde Ange sedan ingångsintervallet, antingen genom att skriva in en arbetsbladets intervalladress eller genom att välja arbetsbladintervallet Om ditt inmatningsområde innehåller en textetikett för att identifiera Eller beskriv dina data, markera kryssrutan Märk. Ange utjämningskonstanten. Ange utjämningskonstantvärdet i textrutan Dämpningsfaktor. Excel-hjälpfilen föreslår att du använder en utjämningskonstant mellan 0 2 och 0 3 Förmodligen, om Du använder det här verktyget, du har egna idéer om vad den korrekta utjämningskonstanten är. Om du inte klarar av utjämningskonstanten kanske du inte borde använda det här verktyget. Tala Excel var du ska placera exponentiellt jämnaste glidande genomsnittsdata. Använda Textrutan Utmatningsområde för att identifiera arbetsbladets intervall i vilket du vill placera den glidande genomsnittliga data I exemplet på arbetsbladet placerar du exempelvis den glidande genomsnittliga data i arbetsbladet intervall B2 B10. Valfritt diagram Exponentially smoothed data. För att kartlägga exponentiellt jämna data, markera kryssrutan Diagramutmatning. Valfritt Ange att du vill att standardfelinformation ska beräknas. För att beräkna standardfel väljer du kryssrutan Standardfel Excel placerar standardfelvärden bredvid de exponentiellt släta glidande genomsnittsvärdena. Efter att du har angett vilken flyttbar genomsnittsinformation du vill ha beräknad och var du vill Det placeras, klicka på OK. Excel beräknar glidande medelvärde. Simmande rörliga medelvärden gör trenderna stående. Medelvärdena MA är en av de mest populära och ofta använda tekniska indikatorerna. Det glidande genomsnittet är lätt att beräkna och, en gång ritat på ett diagram, Är ett kraftfullt visuellt trendspottningsverktyg. Du kommer ofta att höra om tre typer av rörliga medelvärden, enkla exponentiella och linjära. Det bästa stället att starta är att förstå de mest grundläggande det enkla glidande medeltalet SMA Låt oss ta en titt på denna indikator och hur det kan Hjälphandlare följer trender mot större vinster För mer om glidande medelvärden, se vår Forex Walkthrough. Trendlines Det kan inte vara något komplett un Förståelse av glidande medelvärden utan förståelse för trender En trend är helt enkelt ett pris som fortsätter att röra sig i en viss riktning. Det finns bara tre verkliga trender som en säkerhet kan följa. En uptrend eller bullish trend betyder att priset går högre. En downtrend eller bearish trend betyder att priset går under en sido trend där priset rör sig sidled. Det viktiga att komma ihåg om trender är att priserna sällan rör sig i en rak linje. Därför används rörliga medellinjer för att hjälpa en Näringsidkaren identifierar lättare riktningen för trenden För mer avancerad läsning om detta ämne, se Grunderna i Bollinger-band och Flytta genomsnittliga kuvert. Raffinera ett populärt handelsverktyg. Genomföra medelkonstruktion Textboksdefinitionen för ett glidande medelvärde är ett genomsnittspris för en säkerhet Använda en viss tidsperiod Låt oss ta det mycket populära 50-dagars glidande genomsnittet som ett exempel. Ett 50-dagars glidande medelvärde beräknas genom att ta slutkurserna för de senaste 50 Dagar av eventuell säkerhet och lägga dem ihop Resultatet från tilläggsberäkningen divideras sedan med antalet perioder, i det här fallet 50 För att fortsätta att beräkna det glidande genomsnittet dagligen, ersätt det äldsta numret med den senaste stängningen Pris och samma matte. Oavsett hur länge eller kort av ett glidande medelvärde du ser för att plotta, är de grundläggande beräkningarna förblir desamma. Förändringen kommer att vara i antal slutkurser du använder Så till exempel en 200-dagars Glidande medelvärde är slutkursen för 200 dagar summerad tillsammans och sedan dividerad med 200. Du kommer att se alla typer av glidande medelvärden, från två dagars glidande medelvärden till 250 dagars glidande medelvärden. Det är viktigt att komma ihåg att du måste ha ett visst tal Av slutkurserna för att beräkna det glidande genomsnittet Om en säkerhet är helt ny eller bara en månad gammal kommer du inte att kunna göra ett 50-dagars glidande medelvärde eftersom du inte har tillräckligt med datapunkter. Det är också viktigt att notera att vi har c Hosen för att använda slutkurserna i beräkningarna, men glidande medelvärden kan beräknas med månatliga priser, veckopriser, öppningspriser eller till och med intradagpriser. Mer information finns i vår handledning för Moving Averages. Figur 1 Ett enkelt glidande medelvärde i Google Inc. Figur 1 är ett exempel på ett enkelt glidande medelvärde på ett börsdiagram av Google Inc Nasdaq GOOG Den blå linjen representerar ett 50-dagars glidande medelvärde I exemplet ovan kan du se att trenden har flyttat lägre sedan slutet av 2007 Priset på Googles aktier föll under 50-dagars glidande medelvärde i januari 2008 och fortsatte nedåt. När priset kryssar under ett glidande medelvärde kan det användas som en enkel handelssignal. Ett drag under det glidande medelvärdet som visas ovan antyder att björnen har kontroll över Prisåtgärden och att tillgången sannolikt kommer att gå lägre. Omvänt tyder ett kors över ett glidande medel att tjurarna är i kontroll och att priset kan bli redo att göra ett drag högre. Läs mer i Spårpris Med Trendlines. Andra sätt att använda rörliga medelvärden Flytta medelvärden används av många näringsidkare för att inte bara identifiera en nuvarande trend utan också som en in - och utträdesstrategi. En av de enklaste strategierna är beroende av korsningen av två eller flera glidande medelvärden. Den grundläggande signalen är givet när kortsiktigt medelvärde passerar över eller under längre sikt glidande medelvärde Två eller flera glidande medelvärden gör att du kan se en längre sikt trend jämfört med ett kortare sikt glidande medelvärde. Det är också en enkel metod för att bestämma om trenden ökar styrkan Eller om det är på väg att vända Om du vill ha mer på den här metoden läs A Primer på MACD. Figure 2 Ett långsiktigt och kortare sikt glidande medelvärde i Google Inc. Figure 2 använder två glidande medelvärden, en långsiktig 50-dagars, Visad av den blå linjen och den andra kortare termen 15-dagars, visad av den röda linjen. Detta är samma Google-diagram som visas i Figur 1, men med tillägg av de två glidande medelvärdena för att illustrera skillnaden mellan de två längderna. Märker tha T 50-dagars glidande medelvärdet är långsammare att anpassa sig till prisändringar eftersom det använder mer datapunkter vid beräkningen. Å andra sidan är det 15 dagars glidande medlet snabbt att reagera på prisändringar eftersom varje värde har större viktning Beräkningen på grund av den relativt korta tidshorisonten I det här fallet, med hjälp av en korsstrategi, skulle du se till att 15-dagarsgenomsnittet passerar under 50-dagars glidande medelvärde som en post för en kort position. Figur 3 En tre - Månad. Ovanstående är ett tre månaders diagram över USAs Oil AMEX USO med två enkla glidande medelvärden. Den röda linjen är det kortare 15-dagars glidande genomsnittet, medan den blå linjen representerar det längre, 50-dagars glidande genomsnittet. De flesta handlare kommer att Använd korset av det kortsiktiga glidande medeltalet över det långsiktiga glidande medlet för att initiera en lång position och identifiera starten på en hausseuropeisk trend. Läs mer om att tillämpa denna strategi i Trading MACD Divergence. Support är etablerad när ett pris trender Nedåt Det finns En punkt där försäljningspresset sjunker och köparna är villiga att gå in. Med andra ord är ett golv etablerat. Resistance sker när ett pris tränar uppåt. Det kommer en punkt när köpstyrkan minskar och säljarna går in. Detta skulle skapa en Tak För mer förklaring, läs Support Resistance Basics. I båda fallen kan ett glidande medelvärde kunna signalera ett tidigt stöd eller motståndsnivå. Om en säkerhet försvinner lägre i en etablerad uptrend, skulle det inte vara överraskande att se Aktien finner stöd på ett långsiktigt 200-dagars glidande medel Å andra sidan, om priset trender lägre, kommer många handlare att se till att lagret stöter mot resistansen hos stora glidande medelvärden 50-dagars, 100-dagars, 200-dagars SMAs För mer om att använda stöd och motstånd för att identifiera trender, läs Trend-Spotting med ackumuleringsdistributionslinjen. Konklusion Flyttande medelvärden är kraftfulla verktyg Ett enkelt glidande medelvärde är enkelt att beräkna, vilket gör det möjligt att Att jobba ganska snabbt och enkelt Ett rörligt medel s största styrka är dess förmåga att hjälpa en näringsidkare att identifiera en aktuell trend eller upptäcka en eventuell trendomvandling. Flyttande medelvärden kan också identifiera en nivå av stöd eller motstånd för säkerheten, eller fungera som en enkel Ingångs - eller utgångssignal Hur du väljer att använda glidande medelvärden är helt upp till dig. Den ränta vid vilken ett förvaltningsinstitut lånar medel som förvaras i Federal Reserve till ett annat förvaringsinstitut.1 En statistisk åtgärd för spridning av avkastning för en viss säkerhet eller marknadsindex Volatilitet kan antingen mätas. En akt var den amerikanska kongressen antagen 1933 som Banking Act, som förbjöd kommersiella banker att delta i investeringen. Nonfarm lön hänvisar till något jobb utanför gårdar, privata hushåll och ideella sektorn USA Bureau of Labor. The valuta förkortning eller valutasymbol för den indiska rupien INR, indiens valuta Rupén består av 1. Ett första bud på en konkursföretagets tillgångar från en intresserad köpare vald av konkursbolaget Från en pool av bidders. Moving genomsnittliga och exponentiella utjämningsmodeller. Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga promenadmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt lokalt medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen. Den samma strategin kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medel kallas ofta en Jämn version av den ursprungliga serien, eftersom kortsiktiga medelvärden medför att utjämning av stötarna i originalserien genom att justera graden av utjämning av bredden av E glidande medelvärdet kan vi hoppas att träffa någon form av optimal balans mellan prestanda för medel - och slumpmässiga gångmodeller Den enklaste typen av medelvärdesmodell är det enkla lika viktade rörliga genomsnittet. Prognosen för värdet av Y vid tid t 1 som är gjord vid tid t är lika med det enkla genomsnittet av de senaste m-observationerna. Här och på andra ställen kommer jag att använda symbolen Y-hat för att kunna förutse en prognos av tidsserie Y som gjorts så tidigt som möjligt före en given modell. Detta medel är centrerat vid period-m 1 2, vilket innebär att uppskattningen av Den lokala medelvärdet tenderar att ligga bakom det verkliga värdet av det lokala medelvärdet med ca m 1 2 perioder Således säger vi att medeltal för data i det enkla glidande medlet är m 1 2 relativt den period som prognosen beräknas för det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkterna i data. Om du till exempel medger de senaste 5 värdena kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m 1, Den enkla glidande SMA-modellen motsvarar den slumpmässiga promenadmodellen utan tillväxt Om m är mycket stor jämförbar med längden av uppskattningsperioden är SMA-modellen lika med medelmodellen. Som med vilken parameter som helst av en prognosmodell är det vanligt för att justera värdet på ki n för att få den bästa passformen till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar uppvisa slumpmässiga fluktuationer runt ett långsamt varierande medel. Låt oss försöka passa det med en slumpmässig promenad modell, vilket motsvarar ett enkelt glidande medelvärde av 1 term. Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer den mycket av bruset i data, de slumpmässiga fluktuationerna samt signalen den lokala medelvärde Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser. Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i detta fall Medelåldern för data i detta prognosen är 3 5 1 2, så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare. Notera att den långsiktiga termiska prognoser från SMA mod el är en horisontell rak linje, precis som i den slumpmässiga promenadmodellen. Således antar SMA-modellen att det inte finns någon trend i data. Även om prognoserna från slumpmässig promenadmodellen helt enkelt motsvarar det senast observerade värdet, kommer prognoserna från SMA-modellen är lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla rörliga genomsnittet blir inte större eftersom prognosen för horisonten ökar. Detta är uppenbarligen inte korrekt. Tyvärr finns ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde öka för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre horisont. Till exempel kan du skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt, etc inom det historiska dataprovet. Du kan sedan beräkna provstandardavvikelserna av fel vid varje prognos h orizon och konstruera sedan konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar av lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt. Medelåldern är Nu 5 perioder 9 1 2 Om vi tar ett 19-årigt glidande medelvärde, ökar medeltiden till 10. Notera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-årigt genomsnitt. Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över de tre och 9-siktiga genomsnitten, och Deras andra statistik är nästan identiska Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. Tillbaka till början av sidan. Brons s Exponentiell utjämning exponentiellt vägd glidande medelvärdet. Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer Intuitivt bör tidigare data diskonteras mer gradvis - till exempel bör den senaste observationen Få lite mer vikt än 2: a senast och 2: a senast bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämning SES-modellen åstadkommer detta. Låt beteckna en utjämningskonstant ett tal mellan 0 och 1 Ett sätt att skriva modellen är att definiera en serie L som representerar den aktuella nivån, dvs det lokala medelvärdet av serien som uppskattat från data upp till idag. Värdet av L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta. Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där kontrollen av det interpolerade värdet är så nära som möjligt cent observation Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet. Evivalent kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner I den första versionen är prognosen en interpolering Mellan föregående prognos och tidigare observation. I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel. Erroren vid tidpunkten t I den tredje versionen är prognosen en exponentiellt viktad dvs diskonterat glidande medelvärde med rabattfaktor 1.Interpoleringsversionen av prognosformuläret är det enklaste att använda om du implementerar modellen på ett kalkylblad som passar i en enda cell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet av lagras. Notera att om 1, motsvarar SES-modellen en slumpmässig promenadmodell wit träväxt Om 0, motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet Return to top of the page. Den genomsnittliga åldern för data i prognosen för enkel exponentiell utjämning är 1 relativ till den period som prognosen beräknas för. Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie. Därför tenderar den enkla glidande genomsnittliga prognosen att ligga bakom vändpunkter med cirka 1 period. Till exempel när 0 5 fördröjningen är 2 perioder när 0 2 fördröjningen är 5 perioder då 0 1 fördröjningen är 10 perioder och så vidare. För en given medelålder, dvs mängden fördröjning, är den enkla exponentiella utjämning SES-prognosen något överlägsen den enkla rörelsen genomsnittlig SMA-prognos eftersom den lägger relativt större vikt vid den senaste observationen - det är något mer responsivt på förändringar som inträffade under det senaste. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 0 2 båda en genomsnittlig ålder av 5 för da ta i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och samtidigt glömmer det inte helt värderingar som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som är kontinuerligt variabel så att den lätt kan optimeras genom att använda en solveralgoritm för att minimera medelkvadratfelet. Det optimala värdet av SES-modellen för denna serie visar sig Att vara 0 2961, som visas här. Medelåldern för data i denna prognos är 1 0 2961 3 4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är En horisontell rak linje som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt Men notera att de konfidensintervaller som beräknas av Statgraphics nu avviker på ett rimligt sätt och att de är väsentligt smalare än förtroendeintervallet för rand Om walk-modellen SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell, så den statistiska teorin om ARIMA-modeller ger en bra grund för att beräkna konfidensintervaller för SES-modell SES-modellen är speciellt en ARIMA-modell med en icke-säsongsskillnad, en MA 1-term och ingen konstant term som annars kallas en ARIMA 0,1,1-modell utan konstant MA1-koefficienten i ARIMA-modellen motsvarar Kvantitet 1- i SES-modellen Om du till exempel passar en ARIMA 0,1,1-modell utan konstant till den analyserade serien, visar den uppskattade MA 1-koefficienten sig på 0 7029, vilket är nästan exakt en minus 0 2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend för en SES-modell. Ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA 1-term med en konstant, dvs en ARIMA 0,1,1-modell med konstant De långsiktiga prognoserna kommer att Då har en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant lång Termisk exponentialutveckling till en enkel exponentiell utjämningsmodell med eller utan säsongjustering genom att använda inflationsjusteringsalternativet i prognostiseringsförfarandet. Den lämpliga inflationsprocenttillväxten per period kan uppskattas som lutningskoefficienten i en linjär trendmodell monterad på data i Samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter. Tillbaka till början av sidan. Brett s Linjär dvs dubbel exponentiell utjämning. SMA-modellerna och SES-modellerna antar att det inte finns någon trend av Vilken typ som helst i de data som vanligtvis är ok eller åtminstone inte för dålig för 1-stegs prognoser när data är relativt noi sy och de kan modifieras för att införliva en konstant linjär trend som visad ovan. Vad sägs om kortsiktiga trender Om en serie visar en varierande tillväxthastighet eller ett cykliskt mönster som står klart mot bruset och om det finns behov av att Prognos mer än 1 år framåt, kan uppskattning av en lokal trend också vara ett problem. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning av LES-modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trenden Modellen är Brown s linjär exponentiell utjämningsmodell, som använder två olika släta serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centren. En mer sofistikerad version av denna modell, Holt s, är diskuteras nedan. Den algebraiska formen av Browns linjära exponentiella utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men e kvivalenta former Standardformen för denna modell uttrycks vanligen enligt följande. Låt S beteckna den singelglatta serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y Det betyder att värdet på S vid period t ges av. Minns att under enkel exponentiell utjämning skulle detta vara prognosen för Y vid period t 1 Låt sedan S beteckna den dubbelsidiga serien som erhållits genom att applicera enkel exponentiell utjämning med samma till serie S. Slutligen är prognosen för Y tk för vilken som helst K 1, ges av. Detta ger e 1 0 dvs lurar lite och låt den första prognosen motsvara den faktiska första observationen och e 2 Y 2 Y 1, varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden Som formel baserad på S och S om den senare startades med användning av S 1 S 1 Y 1 Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Helt s linjär exponentiell utjämning. s LES-modellen beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på datamönstren att den kan passa nivån och trenden får inte variera vid oberoende priser Holt s LES-modellen tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown s-modellen, finns det en uppskattning L t på lokal nivå och en uppskattning T T av den lokala trenden Här beräknas de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som tillämpar exponentiell utjämning åt dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L tl och T t-1, varför prognosen för Y t som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1 När det verkliga värdet observeras, uppdateras uppskattningen av nivån beräknas rekursivt genom att interpolera mellan Yt och dess prognos L t-1 T t 1 med vikter av och 1. Förändringen i beräknad nivå, nämligen L t L t 1 kan tolkas som en bullrig mätning av Trenden vid tiden t Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L t L t 1 och den tidigare uppskattningen av trenden, T t-1 med vikter av och 1.Tolkningen av trendutjämningskonstanten är analog med den för jämnliknande konstanten Modeller med små värden antar att trenden förändras bara mycket långsamt över tiden medan modeller med större antar att det förändras snabbare En modell med en stor tror att den avlägsna framtiden är mycket osäker eftersom fel i trendberäkning blir ganska viktiga när prognoser mer än en period framöver. Av sidan. Utjämningskonstanterna och kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 0 3048 och 0 008 Det mycket lilla värdet av Innebär att modellen antar mycket liten förändring i trenden från en period till en annan, så i princip försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används vid uppskattning av t han lokal nivå av serien, är den genomsnittliga åldern för de data som används för att uppskatta den lokala trenden proportionell mot 1, men inte exakt lika med det i det här fallet visar sig vara 1 0 006 125 Detta är inte mycket exakt nummer Eftersom beräkningsnoggrannheten inte är riktigt 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som uppskattas i SES-trendmodellen. Det uppskattade värdet är nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend , så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du eyeball denna plot ser det ut som om den lokala trenden har vänt sig nedåt i slutet av Serie Wh Vid har hänt Parametrarna för denna modell har uppskattats genom att minimera kvadreringsfelet i 1-stegs prognoser, inte längre prognoser, i vilket fall trenden gör inte stor skillnad. Om allt du tittar på är 1 - steg framåtfel, ser du inte den större bilden av trender över säga 10 eller 20 perioder För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den Använder en kortare baslinje för trenduppskattning. Om vi exempelvis väljer att ställa in 0 1, är medelåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden under de senaste 20 perioderna eller så Här är vad prognosplottet ser ut om vi ställer in 0 1 samtidigt som vi håller 0 3 Det ser intuitivt rimligt ut för den här serien, även om det är troligt farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad med felstatistik Här är En modell jämförelse f eller de två modellerna som visas ovan samt tre SES-modeller Det optimala värdet på SES-modellen är ungefär 0 3, men liknande resultat med något mer eller mindre responsivitet erhålls med 0 5 och 0 2. En Holt s linjär expo-utjämning Med alfa 0 3048 och beta 0 008. B Holt s linjär expjäkning med alfa 0 3 och beta 0 1. C Enkel exponentiell utjämning med alfa 0 5. D Enkel exponentiell utjämning med alfa 0 3. E Enkel exponentiell utjämning med alfa 0 2.De statistiken är nästan identiska, så vi kan verkligen inte göra valet på grundval av prognosfel i ett steg i dataprovet. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera strömmen trendberäkning om vad som hänt under de senaste 20 perioderna eller så kan vi göra ett fall för LES-modellen med 0 3 och 0 1 Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna Vara lättare att förklara och skulle också ge mer medel e-of-the-road prognoser för de kommande 5 eller 10 perioderna Gå tillbaka till toppen av sidan. Vilken typ av trend-extrapolation är bäst horisontellt eller linjärt. Empiriska bevis tyder på att om uppgifterna redan har justerats om det behövs för inflationen, då Det kan vara oskäligt att extrapolera kortsiktiga linjära trender långt in i framtiden. Trenden som uppenbaras idag kan slakta i framtiden på grund av olika orsaker som produktförstöring, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Därför är det enkelt exponentiellt Utjämning utförs ofta bättre utom provet än vad som annars skulle kunna förväntas trots sin naiva horisontella trend-extrapolering. Dämpade trendändringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den dämpade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA 1,1,2-modell. Det är möjligt att beräkna konfidensintervall arou nd långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller Var försiktig att inte alla mjukvaror beräknar konfidensintervaller för dessa modeller korrekt. Bredden på konfidensintervallet beror på jag RMS-felet i modellen, ii typen av utjämning enkel eller linjär iii värdet s för utjämningskonstanten s och iv antalet framåtprognoser du förutspår Allmänt sprids intervallen snabbare och blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används Detta avsnitt diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. Gå tillbaka till början av sidan.
No comments:
Post a Comment